人工智能芯片的竞争目前分为三个主要赛道

艾欧体(Aiouti)物联网资讯:第一个是基于GPU、FPGA等通用芯片的半定制方案。比如英伟达针对各类智能计算设备开发对应的GPU,以及打造NVIDIA CUDA平台大大提升其编程效率、开放性和丰富性,建立了包含CNN、DNN、深度感知网络、RNN、LSTM 以及强化学习网络等算法的平台,使得AI可以渗透到各种类型的智能机器。

美国沿袭在传统计算芯片上的强大优势,包括在CPU,FPGA,GPU,DSP领域包揽全球第一的技术能力和行业地位,自然占据了这个赛道的霸主地位,据称在医疗、生命科学、能源、金融服务、汽车、制造业以及娱乐业等多个领域运用GPU或者FPGA开展深度学习工作的企业有近4000余家,传统优势的渗透力可见一斑。也可以从侧面看出,在这条赛道上,其实中国的企业鲜少再有机会。

第二个赛道是针对深度学习算法的专用芯片。GPU、FPGA等通用芯片虽然适用于大规模并行计算,但是也天然存在性能、功耗等方面的瓶颈,面对不断激增的数据量和持续扩大的AI应用规模,通用芯片自然有其局限性,因此专用芯片必然是大势所趋。中国科学院计算所研究员、寒武纪深度学习处理器芯片创始人陈云霁博士在《中国计算机学会通讯》上撰文指出:通过设计专门的指令集、微结构、人工神经元电路、存储层次,有可能在3~5年内将深度学习模型的智能处理效率提升万倍。这也使得中美人工智能芯片创业的大部分企业集中在这个赛道进行竞争。

目前这个赛道聚集了当下全球创新最活跃的智力资源,涌现出多种方法来定制芯片设计和架构,去解决不同AI应用场景中人工智能芯片的诸多“痛点”问题,比如影响处理器性能提高的存储带宽瓶颈,计算非结构化信息时性能疲软,再比如在嵌入式设备上实现AI应用,除了计算性能的要求之外,如何平衡功耗和成本的问题等等。在这条赛道上,既有谷歌、intel、英伟达等全球人工智能和芯片领域的顶尖巨头大手笔的投入,也有无数的中小创业企业在全力以赴,期望跳过这些传统巨头在计算架构上的坚固壁垒,去创造人工智能时代的Intel或者ARM。这其中不乏大量的来自中国的人工智能芯片初创企业,在AI领域的投资上,我国已经超越美国成为世界第一,其中大笔资金投向了AI专用芯片领域,这也充分证明了这个赛道,有对我国计算芯片非比寻常的意义。

第三个赛道是类脑计算芯片,这个领域不再仅仅局限于加速深度学习算法,也不仅仅局限于在特定场景下实现人工智能,而是在芯片基本结构甚至器件层面上希望能够开发出新的非冯诺依曼计算机模型和体系结构,去解决通用智能计算的问题。类脑的研究距离可以大规模广泛使用的成熟商用技术还有一定差距,甚至在产业化的过程中还面临不小的风险,但是长期来看这个赛道是最有可能会带来计算体系革命的选择。在这个领域其实更多是基础研究能力的比拼,中国和美国的差距其实并不大。

欢迎转载,转载请注明作者和出处!:IOT-艾欧体 » 人工智能芯片的竞争目前分为三个主要赛道

赞 (0)
分享到:更多 ()

评论 0

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址